DNA Structure & Function (Outline)

1. Historical perspective (DNA as the genetic material):
 - Genetic transformation and DNA
 - DNA is the genetic material in bacterial viruses (phage)
 - The base-pairing rule
 - DNA structure

2. Basis for polarity of SS DNA and anti-parallel complementary strands of DNA

3. DNA replication models

4. Mechanism of DNA replication: steps and molecular machinery

5. Replication and the end of linear chromosomes—
 Molecular basis for aging

6. Fidelity of DNA replication
By definition the genetic material of must

- be replicated

 DNA Replication

- direct the cell functions by providing information for production of proteins

Flow of the genetic information (Gene Expression)
DNA as the Genetic Material

Time-line

1850’s Mendel
1870-1890 Microscopy: Mitosis and Meiosis
1902 Chromosome basis of inheritance (Thomas H. Morgan)
20th century Work with bacteria and viruses
DNA Structure

Prior to the 1950s, DNA is a polymer of nucleotides consisting of:
- a nitrogenous base
- a sugar
- a phosphate group
1928 Fredrick Griffith Experiments
 Concept of transformation (using Bacteria that cause pneumonia in mammals)

1944 Avery, McCarty, and MacLeod
 The transforming material is DNA
 “DNA is the genetic material”

1952 Hershey and Chase
 DNA is the genetic material in viruses that infect bacteria
Griffith- Phenomenon of **Transformation**, a change in genotype (*genetic makeup*) by a foreign substance that changes the phenotype (*observed properties*) of the cell.

RESULTS
- Mouse dies
- Mouse healthy
- Mouse healthy
- Mouse dies

Living S cells are found in blood sample.
History of DNA

Avery, MacLeod, and McCarty, 1944

- DNA is the **transforming material**

Rough nonvirulent (type R) + Heat-killed smooth virulent (type S) + DNase → Mouse lives

Rough nonvirulent (type R) + Heat-killed smooth virulent (type S) + Protease → Mouse dies

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
• A phage, is a virus that infects bacteria and is made of DNA and protein.

• Alfred Hershey and Martha Chase- the genetic material of the phage T2 is DNA.
1. Mix radioactively labeled phages with bacteria. The phages infect the bacterial cells.
2. Agitate in a blender to separate phages outside the bacteria from the cells and their contents.
3. Centrifuge the mixture so bacteria form a pellet at the bottom of the test tube.
4. Measure the radioactivity in the pellet and the liquid.

Batch 1:
Phages grown with radioactive sulfur (35S)

Batch 2:
Phages grown with radioactive phosphorus (32P)
Biochemical analysis of DNA: Base-pairing rule

1947 Erwin Chargaff, analysis of DNA from different species %A = %T & %C = %G

Human DNA

A = 30.9%
T = 29.4%
C = 19.9%
G = 19.8%
Base-pairing in DNA

Adenine (A) interacts with Thymine (T)

Guanine (G) interacts with Cytosine (C)

Guanosine (and deoxyguanosine)

Cytosine (and deoxythyminosine)
Structural Model of DNA
Maurice Wilkins and Rosalind Franklin- X-ray crystallography: Polynucleotide Helix

(a) Rosalind Franklin
(b) Franklin’s X-ray diffraction Photograph of DNA
Watson and Crick deduced that DNA was a double-stranded helix

Through observations of the X-ray crystallographic images of DNA
Polarity and anti-parallel nature of the two DNA strands (5’ and 3’ ends)
Watson and Crick
- Specificity of pairing is dictated by the structure of the bases

Example

(b) Partial chemical structure
Three models for DNA replication:
- Conservative model: The parental double helix remains intact and an all-new copy is made.
- Semi-conservative model: The two strands of the parental molecule separate, and each functions as a template for synthesis of a new complementary strand.
- Dispersive model: Each strand of both daughter molecules contains a mixture of old and newly synthesized parts.
Bacteria cultured in medium containing 15N

Bacteria transferred to medium containing 14N

DNA sample centrifuged after 20 min (after first replication)

DNA sample centrifuged after 40 min (after second replication)

Meselson-Stahl Experiment animation

Meselson-Stahl Experiment
The Basic concept of DNA replication

(a) The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C.

(b) The first step in replication is separation of the two DNA strands.

(c) Each parental strand now serves as a template that determines the order of nucleotides along a new complementary strand.

(d) The nucleotides are connected to form the sugar-phosphate backbones of the new strands. Each “daughter” DNA molecule consists of one parental strand and one new strand.

Each strand of DNA act as a template for synthesis of new complementary strands
Major Events in the History of Earth
Role of RNA in DNA Replication

- Origin of solar system and Earth
- Proterozoic eon: Billions of years ago
- Archaean eon
- Paleozoic
- Mesozoic
- Cenozoic
- Humans
- Land plants
- Animals
- Multicellular eukaryotes
- Single-celled eukaryotes
- Prokaryotes
- Atmospheric oxygen
- RNA
- Abiotic
Molecular Mechanism of DNA Replication

Collective action of several macro-molecules:
- DNA
- Proteins (enzymes & others)
- RNA
- Ribo-protein (for linear chromosomes)

Direction of replication of new strands; 5′-----3′

How nucleotides are added in DNA replication (Active link)
DNA polymerase adds deoxyribonucleotides in a 5’ to 3’ direction, it adds nucleotides to the 3’ end of a growing strand.

The new strand always starts with the 5’ end, the template starts with the 3’ end.
Primase, an RNA polymerase, uses the DNA template strand to polymerize a short complementary RNA chain (RNA primer)

Two different DNA polymerases both
- cannot initiate the synthesis of a polynucleotide
- can only add nucleotides to an existing 3’ end
Summary of DNA Replication

• Semi-conservative
• Initiation: Origin of replication
• Primase and RNA primer
• Template strand vs. new strand
• 5’ to 3’ direction
• DNA polymerase (III and I)
• Base-pairing rules
• dNTPs: deoxy-ATP, deoxy-GTP, deoxy-CTP, deoxy-TTP
• Leading and lagging strands
• Okazaki fragments
• DNA ligase
• Bidirectional
• Fidelity of DNA replication is maintained by activity of DNA polymerase and other proof-reading systems.
Other proteins participate in DNA replication including: Helicase, topoisomerase, single-strand binding protein

<table>
<thead>
<tr>
<th>Protein</th>
<th>Function for Leading and Lagging Strands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helicase</td>
<td>Unwinds parental double helix at replication forks</td>
</tr>
<tr>
<td>Single-strand binding protein</td>
<td>Binds to and stabilizes single-stranded DNA until it can be used as a template</td>
</tr>
<tr>
<td>Topoisomerase</td>
<td>Corrects “overwinding” ahead of replication forks by breaking, swiveling, and rejoining DNA strands</td>
</tr>
</tbody>
</table>

Table 16.1 Bacterial DNA replication proteins and their functions

<table>
<thead>
<tr>
<th>Protein</th>
<th>Function for Leading Strand</th>
<th>Function for Lagging Strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primase</td>
<td>Synthesizes a single RNA primer at the 5’ end of the leading strand</td>
<td>Synthesizes an RNA primer at the 5’ end of each Okazaki fragment</td>
</tr>
<tr>
<td>DNA pol III</td>
<td>Continuously synthesizes the leading strand, adding on to the primer</td>
<td>Elongates each Okazaki fragment, adding on to its primer</td>
</tr>
<tr>
<td>DNA pol I</td>
<td>Removes primer from the 5’ end of leading strand and replaces it with DNA, adding on to the adjacent 3’ end</td>
<td>Removes the primer from the 5’ end of each fragment and replaces it with DNA, adding on to the 3’ end of the adjacent fragment</td>
</tr>
<tr>
<td>DNA Ligase</td>
<td>Joins the 3’ end of the DNA that replaces the primer to the rest of the leading strand</td>
<td>Joins the Okazaki fragments</td>
</tr>
</tbody>
</table>
Replication of long DNA molecules begins at multiple origins of replication simultaneously and is bidirectional.
Replicating the Ends of linear DNA Molecules

Mechanism of DNA replication causes telomeres to get shorter with each round of replication.

Primer removed but cannot be replaced with DNA because no 3’ end available for DNA polymerase.

Removal of primers and replacement with DNA where a 3’ end is available.

Second round of replication.

Further rounds of replication.

Shorter and shorter daughter molecules.

http://www.learner.org/courses/biology/units/cancer/images.html
Current Connections to DNA structure and replication

Q: Why are we mortal with a limited life span?

A: Our cells have a limited life span (# of cell divisions)
Telomerase- an enzyme (riboprotein) that extends the 3’ end of the DNA strand by adding a repeated sequence of 6-nucleotides typically TTAGGG (100-1000 times)

https://www.youtube.com/watch?v=AJNoTmWsE0s

https://www.youtube.com/watch?v=vtXrehpCPEE
Ends of linear chromosomes have special DNA sequences and are known as **telomeres** added by an enzyme known as **telomerase** after DNA replication is completed.
Life span of dividing cells

- Telomerase is active in sperm, eggs, stem cells (bone marrow), and cancer cells but not in somatic tissues.
- Most cells lose 50-200 endmost bases after each cell division.
- After about 50 divisions, shortened telomeres signal the cell to stop dividing.
Fidelity of DNA replication & maintaining DNA integrity

Maintained by:

1. Proof-reading function of DNA polymerase
2. DNA repair systems

http://www.hhmi.org/biointeractive/media/mismatch_repair-lg.mov

DNA damage and repair in general

http://www.youtube.com/watch?v=y16w-CGAa0Y&feature=related
http://www.youtube.com/watch?v=nPS2jBq1k48
Genetic Integrity and Diversity

• Need for maintaining genetic integrity is balanced by having enough genetic variability for natural selection to act on.

• Few errors of DNA replication are not corrected!