General Knowledge and Skills ### Dimensional Analysis - Determine correct units - Construct equation to yield correct units - Calculate solution - Check answer for reasonability #### Common Assays - ELISA - Western Blot - Northern Blot - Southern Blot - Immunoflourescence staining - B-Gal - Luciferace Assay ## Regulatory Requirements - ISO - GMP - GLP - FDA - OSHA - EPA - **Future Trends and Concerns** Increased automation - Specialized equipment - Increased regulations - Society's increased desire for more advanced biotechnology - Constant exposure to chemicals - Keeping skills up-to-date to keep up with technology ### **Skills** - Pipetting - Microscopy - Use of DNA synthesizers - Operation of Centrifuge - Conversions - Aseptic technique - Dilution - Chemical knowledge - Measurements - Accurate and timely maintenance of data - PCR - Chromatography - Titration - Media preparation - Use of relevant tools, equipment and supplies ### Detail-oriented Ability to work independently **Worker Behaviors** - Patient - Good communication skills - Ability to get along with others - Fast-learner - Confident - Flexible - Ability to multi-task - Enjoy working in lab environment - Dependable - Hard-working - Good work ethic - Neat and orderly - Good organization skills - Safety-oriented - Good problem-solving skills # Acronyms B-Gal - B-Galactosidase DNA - Deoxyribonucleic Acid ELISA - Enzyme-linked Immunosorbent Assay EPA – Environmental Protection Agency FDA – Food and Drug Administration FPLC - Fast Performance Liquid Chromatography GLP - Good Laboratory Practices GMP – Good Manufacturing Practices HPLC - High Pressure Liquid Chromatograph ISO - International Standards Organization MSDS – Material Safety Data Sheet OSHA – Operational Safety and Health Administration PCR – Polymerase Chain Reaction # **Tools, Equipment, Supplies and Materials** ### Tools - Balances - Confocal microscope - Electron microscope - Electronic pipette - Fluorescent - microscope Light microscope - Lot modules - Microtome - Multichannel pipette - Orbital shaker - pH meters - Pipetteman - Repeater pipette - Rotovap - Stir/heating plates - Thermometers - Vacuum pumps Water baths - Vortexer - Wire loops # Supplies - Chemicals - Dry ice - Glassware - Ice bucket - Lab notebooks - Lab pens - Labware - Liquid nitrogen - **MSDS** - Parafilm - Personal protective equipment - Pipette tips - Racks Roller bottles - Safety supplies - Wash bottles - Waste container # Equipment - Centrifuge - Computers - ELISA film - Fluorometer - Fume hood - Gas Chromatograph - Glove box - Lyophilizer - - documentation system - Fermentor - Freezers (-80°C, -20°C, liquid nitrogen dewar) - Incubators - Autoclave - **DNA Sequencer** - DNA Synthesizer - Flow cytometer - **FPLC** - **HPLC** - Laminar flow hood - Equipment (cont'd) Plate reader - Power box - Printer/scanner Refractometer - Refrigerators (4°C) Scintillation counter - Sonicator Spectrophotometer - Thermocyclers Transilluminator - Water purification system # **DACUM Panel** Berzas Bichnevicius Senior Production Chemist II Gen-Probe San Diego, CA Jennifer McCague Senior Production Team Assistant Invitrogen Carlsbad, CA Eunice Mejia Research Assistant l The Salk Institute La Jolla, CA Vuong Nguyen Research Technician The Scripps Research Institute La Jolla, CA # **DACUM Facilitator** Elizabeth Basinet Barrett Resource Group San Diego, CA # **DACUM Research Chart** for # Research **Assistant** (In vitro Biology) Produced for CALIFORNIA COMMUNITY COLLEGES **ECONOMIC &** WORKFORCE DEVELOPMENT **PROGRAM** Southern California Biotechnology Center at San Diego Miramar College 10440 Black Mountain Road San Diego, CA 92126 November 20 - 21, 2003 Developed by Barrett Resource Group Workforce Development Solutions Project Management Public & Community Relations 10576 Gabacho Drive ♦ San Diego, CA 92124 ♦ 619-261-4003 | | Duties | < | | | | | | – Tasks –— | | | | | |---------------------------|---|---|---|---|---------------------------------------|--|---|---|--|---|--|----------------------------------| | $\mathbf{A} igg[$ | Maintain
Documentation* | A-1 Establish protocol | A-2 Document equipment calibration | A-3 Record
materials | A-4 Record
methods | A-5 Record results | A-6 Archive documentation | | | | | | | $\mathbf{B} \bigg[$ | Prepare
Reagent
Solution* | B-1 Determine reagent solution | B-2 Procure materials | B-3 Calculate ingredient quantities | B-4 Combine ingredients per protocol | B-5 Adjust
pH | B-6 Perform
final volume
check | B-7 Label
reagent solution | B-8 Prepare
reagent solution
for storage | B-9 Document
reagent solution
preparation | | | | $\mathbf{c} igg[$ | Construct
Clone* | C-1 Choose
appropriate
vector | C-2 Digest
selected vector | C-3 Digest
DNA insert | C-4 Perform
DNA ligation | C-5 Transform
bacteria | C-6 Culture
transformed
bacteria | C-7 Subculture
transformed
bacteria | C-8 Purify plasmid | C-9 Digest
plasmid | C-10 Perform
gel
electrophoresis | C-11 Document clone construction | | \mathbf{D} | Perform Polymerase Chain Reaction* | D-1 Select
DNA primers | D-2 Determine
melting
temperature of
primers | D-3 Gather
PCR reagents | D-4 Determine
DNA
concentration | D-5 Add PCR
components to
PCR tube | D-6 Run PCR
program | D-7 Verify PCR
product | D-8 Document reaction | | | | | $\mathbf{E} igg[$ | Purify
DNA/RNA/Protein
Macromolecules | E-1 Obtain
biological
sample | E-2 Prepare
biological
sample for
purification | E-3 Extract
product | E-4 Purify
extracted
product | E-5 Determine product concentration | E-6 Document purification process | | | I | | | | $\mathbf{F} igg[$ | Perform Tissue
Culture | F-1 Procure
appropriate
cell line | F-2 Prepare
growth media | F-3 Incubate cells | F-4 Regulate
cell density | F-5 Introduce
modifying
agent | F-6 Incubate
modified cells | F-7 Perform
characterization
assay | F-8 Document
tissue culture
process | | | | | $\mathbf{G} \Bigg[$ | Perform
Immunoassay** | G-1 Obtain
immunoassay
sample | G-2 Determine immunoassay method | G-3 Prepare
immunoassay
sample | G-4 Conduct immunoassay | G-5 Analyze
immunoassay
results | G-6 Document immunoassay | | | | | | | \mathbf{H} | Perform
Western Blot | H-1 Obtain
Western Blot
sample | H-2 Prepare
Western Blot
sample | H-3 Separate
prepared
proteins on gel | H-4 Transfer protein to membrane | H-5 Block
non-specific
sites | H-6 Bind
primary
antibody | H-7 Bind
secondary
antibody | H-8 Detect
presence of
antibody | H-9 Document
Western Blot | | | | I | Perform
Chromatography | I-1 Establish
need for
sample
separation | I-2 Determine
separation
method | I-3 Gather
relevant
materials | I-4 Prepare
stationary
phase | I-5 Prepare
mobile phase | I-6 Prepare
sample for
separation | I-7 Run
chromatography | I-8 Analyze
chromatography
results | I-9 Document chromatography | | | | $\mathbf{J}\left[ight.$ | Conduct DNA
Sequencing | J-1 Prepare
acrylamide gel | J-2 Purify
target DNA | J-3 PCR DNA for sequencing | J-4 Run
acrylamide gel | J-5 Analyze
sequencing
results | J-6 Document
DNA
sequencing | | 1 | 1 | 1 | | | | | | | • | - | | | - | | | | | ^{*}All Research Assistants will perform these Duties; other Duties may be performed as required, or as determined by industry specialty. All Duties listed are considered common to Research Assistants. **Reference list of Common Assays under General Knowledge & Skills